Главная > Разное > Техническая электродинамика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

14.4. Согласование линий и узлов

ПОСТАНОВКА ЗАДАЧИ

Идеально согласованный узел. Считаем, что плечо узла идеально согласовано, если т. е. отсутствует отражение от узла в данном плече. Если идеально согласованы все плечи, то считаем, что узел в целом идеально согласован. Эти определения аналогичны понятию об идеально согласованной линии, введенном в 8.9, и относятся к согласованию на минимум отражения. Другой критерий согласования — на максимум выходной активной мощности за редкими исключениями сводится к первому.

Задача согласования линий и узлов формулируется следующим образом. Пусть имеется линия и нагрузка (которая может быть одним из плеч узла либо источником мощности). Сопротивление нагрузки в общем случае комплексно, меняется с частотой и не равно характеристическому сопротивлению линии, поэтому (рис. 14.5а).

Рис. 14.5

Характеристическое сопротивление линии практически активно, возможные изменения его с частотой отнесем условно к нагрузке; нормированные сопротивления поэтому Необходимо рассчитать согласующее

устройство, включаемое между линией и нагрузкой, таким образом, чтобы в рабочей полосе частот -модуль коэффициента отражения на входе согласующего устройства не превышал допустимого значения: Здесь и нижняя и верхняя частоты полосы согласования.

Предположим, что потери в согласующем устройстве пренебрежимо малы. Для удобства рассмотрения разобьем его на две части: узел компенсации, преобразующий комплексную нагрузку в активную практически независящую от частоты; и переход, трансформирующий сопротивление в равное характеристическому сопротивлению линии (рис. 14.56). Существуют принципиальные физические ограничения возможности идеальной реализации каждого из этих преобразований в полосе частот.

Если коэффициент отражения от перехода, а от узла компенсации (оба коэффициента приведены к одному сечению), то отражение от согласующего устройства если оба слагаемых малы. Так как фазы указанных коэффициентов меняются независимо, заданная норма на коэффициент отражения распределяется обычно между двумя узлами:

Узел компенсации представляет собой соединение реактивностей, которые на высоких радиочастотах реализуются с помощью отрезков линий, реактивных элементов типа штырей, диафрагм и т. п. Однако схема с идеальной широкополосной компенсацией невозможна. Например, если нагрузка представляет собой параллельное соединение (активное на нулевой частоте), простейшая схема узла компенсации — параллельно включенная индуктивность создает параллельный резонансный контур, имеющий чисто активное сопротивление на одной частоте в середине рабочей полосы. Дополнительные реактивные элементы создают сложную резонансную систему с более широкой полосой частот, но худшим согласованием в пределах этой полосы. Теоретически доказано [34], что при любой схеме узла компенсации не может быть нарушено неравенство:

где зависит от характера нагрузки. Например, для шунта и для последовательной цепочки, для резонатора

Из ф-лы (14.32) вытекает, что коэффициент отражения не может быть равен нулю в какой-либо конечной полосе частот, так как тогда интеграл обращается в бесконечность. В оптимальном случае в рабочей полосе частот, и вне этой полосы (рис. 14.6). Тогда

В узкой полосе частот коэффициент отражения можно сделать меньшим, чем в широкой. Широкополосные согласующие цепи неизбежно обладают свойствами частотного фильтра. Не следует стремиться к тому, чтобы на одной или нескольких частотах Это существенно увеличивает на других частотах в рабочей полосе.

Практически нецелесообразны сложные схемы узлов компенсации, содержащие более пяти элементов.

Кроме того, неизбежны определенные изменения в рабочей полосе частот. Считая, что в этой полосе и не отклоняется существенно от указанного значения, можно определить по ф-ле (14.33), заменив ее правую часть на

Схемы узлов компенсации многообразны и выбираются в соответствии с характером нагрузки, полосой частот и конкретными особенностями работы.

Переход (трансформатор сопротивлений) представляет собой участок неоднородной линии передачи, характеристическое сопротивление которой меняется по длине от до плавно, либо скачками. Принцип работы всех согласующих переходов один и тот же. От несогласованной нагрузки возникает отраженная волна. Элементы согласующего устройства создают дополнительные отраженные волны, которые компенсируют первоначальную.

Переход конечной длины трансформирует сопротивления лишь приближенно (даже если сопротивления на его концах неизменны). Задачей расчета является отыскание оптимальных переходов наименьшей длины, обеспечивающих коэффициент отражения в заданной полосе частот при известном перепаде сопротивлений Если длина перехода ограничена, то для существует некоторый минимальный предел.

На сравнительно низких частотах согласование осуществляется также электрическими цепями с сосредоточенными параметрами: мостовыми, -образными четырехполюсниками, трансформаторами с индуктивной связью (см. теорию линейных электрических цепей). Заметим, что для них также существуют физические ограничения, препятствующие идеальному преобразованию сопротивлений в полосе частот.

Рис. 14.6

УЗКОПОЛОСНОЕ СОГЛАСОВАНИЕ

В узкополосном согласующем устройстве, как правило, сочетаются компенсация реактивности нагрузки и трансформация сопротивлений. Если согласовать линию с нагрузкой на одной лишь частоте, то обычно в полосе частот не менее 1—2% коэффициент отражения от согласующего устройства будет незначителен. Такое согласование достигается наиболее простыми средствами и в ряде

случаев удовлетворяет практическим потребностям. Рассмотрим несколько простейших способов согласования комплексных сопротивлений.

Рис. 14.7

Согласование реактивным шлейфом. Шлейф — короткозамкнутый или разомкнутый на конце отрезок линии, подключаемый параллельно основной линии с заданной нагрузкой (рис. 14.7), в том сечении В, где ее нормированная проводимость имеет единичную активную составляющую. Входная проводимость реактивного шлейфа, нормированная по компенсирует реактивную проводимость в линии. Поэтому суммарная проводимость в сечении что

Рис. 14.8 (см. скан)

соответствует идеальному согласованию на расчетной частоте (расстояние между сечениями ничтожно мало). Этот способ разработан В. В. Татариновым в 1929 г. Расчет согласования по методу Татаринова рассмотрим на следующем примере.

Пример. Линия с ? нагружена на сопротивление Ом, частоте Рассчитать согласующий короткозамкнутый шлейф с длиной не более Определить коэффициент отражения от устройства а частоте

Для решения воспользуемся круговой диаграммой сопротивления и проводимостей, изображенной на рис. 14.8. Нормированное сопротивление нагрузки (точка Перейдем к нормированным проводимостям, для чего отыщем центрально-симметричную точку Движение плоскости отсчета вдоль линии без потерь как известно, соответствует перемещению точки на диаграмме до кругу. Так как шлейф имеет и замкнут на конце, его входная проводимость индуктивна. Проводимость линии сечении В должна иметь емкостный характер, поэтому минуя на диаграмме точку В, остановимся в точке ,По кольцевой шкале определим Нормированную проводимость шлейфа отнесем к его характеристической проводимости: Отметив на диаграмме точки найдем Присоединив шлейф в сечении В, получим т. е. придем в центр диаграммы.

При росте частоты на на столько же увеличивается электрическая длина отрезков линий: Выполнив на круговой диаграмме аналогичные построения (точки получим на входе устройства что соответствует Итак, согласование с достигается всего в -процентной полосе частот.

Полоса частот увеличивается с уменьшением электрической длины отрезков Поэтому их стремятся сделать как можно более короткими.

На двухпроводных антенных фидерах легко осуществить конструкцию шлейфа, перемещающегося вдоль линии. Для коаксиальных линий и волноводов такой способ согласования трудно реализовать. По этому принципу выполняются лишь нерегулируемые согласующие устройства (например, диафрагмы на рис. 14.18).

Согласование тремя неподвижными реактивностями. Для коаксиальных линий используются неподвижные короткозамкнутые шлейфы, в волноводной технике — емкостные штыри или диафрагмы. Покажем, что тремя реактивностями произвольной величины, но одного знака, расположенными в фиксированных точках линии с интервалом можно согласовать линию при произвольных значениях нагрузки.

Пусть согласование осуществляется емкостными штырями (рис. 14.9а). Приведем проводимость нагрузки к сечению А, где находится первый штырь. Нормированная проводимость в этом случае будет представлена произвольной точкой А «ли А на диаграмме рис. 14.96. Разделим плоскость диаграммы на две части криволинейной границей, состоящей из полуокружности ,и центрально симметричной к лей полуокружности в верхней части диаграммы. Пусть точка А находится слева от этой границы. Тогда емкостным штырем А с положительной реактивной проводимостью можно увеличить мнимую часть проводимости, т. е. перейти от точки А к точке лежащей на

границе. Переход в сечеиие В эквивалентен повороту на в плоскости диаграммы. Точка В также находится на границе, а проводимость Вводя емкостной штырь, легко свести проводимость к значению и перейти тем самым в центр диаграммы. Таким образом, согласование достигнуто штырями а штырь С должен быть выведен из волновода.

В другом случае проводимость в сечении А соответствует точке А справа от границы, тогда штырь А не вводится. Точка В для сечения В находится слева от границы и согласование производится штырями аналогично предыдущему.

Рис. 14.9 (см. скан)

Итак, согласование всегда возможно. Если фаза проводимости нагрузки меняется в ограниченных пределах (точка А всегда слева от границы), для согласования достаточно двух штырей. Если ограничена возможная величина то проводимость настраивающих штырей также ограничена; иапример, при достаточно, чтобы

Четвертьволновый трансформатор (рис. 14.10а) представляет собой отрезок линии передачи длиной с иным

характеристичёским сопротивлением чем у основного тракта (индекс с для характеристических сопротивлений здесь и далее опускаем). Он включается в линию последовательно и предназначен для согласования только активных сопротивлений. Поэтому, если нагрузка является комплексной, между ней и трансформатором включают дополнительный отрезок линии такой длины чтобы его входное сопротивление было чисто активным По круговой диаграмме легко установить величины

Рис. 14.10 (см. скан)

Перейдем к определению характеристического сопротивления трансформатора Нормированное по сопротивление в сечении Нормированное входное сопротивление четвертьволнового отрезка линии без потерь равно обратной величине нормированного сопротивления ее нагрузки [это легко установить из круговой диаграммы или ф-лы (8.57) при поэтому в сечении Для согласования тракта необходимо, чтобы Отсюда следует, что или

Характеристическое сопротивление трансформатора должно быть равно среднему геометрическому от сопротивлений на его концах.

Идентичный этому результат был получен ранее {ф-ла (6.40)], как условие полного прохождения плоской волны через четвертьволновый слой диэлектрика. Существует полная аналогия между задачами о распространении волн по линиям с переменным характеристическим сопротивлением и прохождением волн (в лучевом приближении) через плоские слои с изменяющимся волновым сопротивлением. Поэтому последующие результаты могут быть применены в обоих случаях.

Пример. Согласовать нагрузку Ом с линией Ом. Определяем по круговой диаграмме Ом; Ом. Общая длина согласующего устройства Полоса пропускания при составляет 6%.

Модифицированный трансформатор (рис. 14.106) преобразует комплексное сопротивление нагрузки, в активное сопротивление, равное Он представляет собой отрезок линии длиной с характеристическим сопротивлением и поэтому широкополоснее, чем ранее описанный (при чисто активной нагрузке и оба варианта совпадают). Параметры трансформатора определяются по круговой диаграмме методом последовательных приближений.

Пример. Чтобы сопоставить результаты, заимствуем исходные данные из предыдущего примера: Ом. Проводим расчет методом итераций по следующей схеме:

Примечание. В качестве нулевого приближения выбрано определяется круговой диаграмме как ближайшая (по направлению к генератору) точка с чисто активным сопротивлением, равноудаленная от центра с

Определяем теперь что в семь раз меньше, чем в предыдущем случае. При этом относительная полоса согласования при что в четыре раза превосходит результат, полученный с четвертьволновым трансформатором. Таким образом, преимущества модифицированного трансформатора перед четвертьволновым при нагрузке со значительной реактивностью очевидны.

Трансформатор с пульсирующим (по длине) сопротивлением. В четвертьволновом трансформаторе характеристическое сопротивление трансформирующей секции является промежуточным по величине между согласуемыми сопротивлениями и Характеристическое сопротивление изменяется по длине линии (от ) монотонно; один скачок сопротивления (от ) заменяется двумя меньшими и, кроме того, отражения от них складываются на расчетной частоте в противофазе.

В трансформаторе рис. 14.10 в, согласующем активные сопротивления исходная величина скачков сопротивления не уменьшена. Согласование осуществляется путем интерференции волн, отраженных от трех плоскостей. Согласующие секции имеют те же характеристические сопротивления, что и согласуемые линии; поэтому при согласовании, например, коаксиальных кабелей с сопротивлениями и используются отрезки этих же кабелей, а не изготавливается специальная секция с Ом, необходимая по для четвертьволнового трансформатора.

Анализ показывает [22], что длина каждой секции трансформатора с пульсирующим сопротивлением должна быть что всегда меньше если фазовые скорости и в этих отрезках равны). Таким

образом, общая длина трансформатора не превышает одной шестой длины волны в линии. Например, при полоса частот, в которой осуществляется согласование составляет в этом случае . У четвертьволнового трансформатора в этих же условиях полоса частот в 1,5 раза шире:

<< Предыдущий параграф Следующий параграф >>
Оглавление