Главная > Физика > Общий курс физики. Молекулярная физика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 141. Диффузия в твердых телах

Несмотря на то, что для твердого тела характерно упорядоченное расположение атомов в кристаллической решетке, перемещение атомов возможно и в нем. Тепловые движения, которые в основном имеют характер малых колебаний, в некоторых случаях приводят к тому, что атомы вовсе покидают свои места в решетке. О возможности таких срывов атомов свидетельствует уже тот факт, что твердые тела могут испаряться. Правда, при испарении отрыв атомов происходит в поверхностном слое, но нет оснований утверждать, что такой отрыв невозможен и внутри тела.

Именно благодаря тому, что атомы покидают свои места в узлах решетки, возникают некоторые дефекты в кристаллах —такие, как дефекты типа Шоттки и Френкеля. С этими срывами атомов и их последующим перемещением в кристалле связана и диффузия в твердых телах.

Так же, как в газах, частицы в твердых телах имеют различные энергии тепловых движений. И при любой температуре имеется определенная часть атомов, энергия которых значительно превосходит среднюю и достаточно велика для того, чтобы они могли покинуть свое место в решетке, и перейти в новое положение. Чем выше температура, тем таких атомов больше, и поэтому коэффициент диффузии с повышением температуры быстро возрастает (по экспоненциальному закону). Но так как число атомов с достаточно большой энергией всегда мало (если температура много ниже температуры плавления), то процесс диффузии в твердом теле оказывается еще более медленным процессом, чем в газах и жидкостях. Например, коэффициент диффузии меди в золото при

300 °С равен Для сравнения укажем, что при диффузии водного раствора метилового спирта в воду а диффузия аргона в гелий идет с Тем не менее диффузия в твердых телах играет большую роль в целом ряде процессов. Она наблюдается как в однокомпонентном (в этом случае говорят о самодиффузни), так и в многокомпонентных веществах, в моно- и в поликристаллах.

Опыт (в частности, исследования с помощью так называемых меченых атомов) показывает, что диффузия в твердых телах осуществляется главным образом следующими тремя способами:

1. Соседние атомы в решетке обмениваются местами в решетке, как это показано на рис. 198. Обмен этот может, например, явиться следствием поворота участвующей в ней пары атомов вокруг средней точки.

2. Атом, находящийся на «своем» месте в узле решетки, покидает его и располагается в междоузлии, а затем мигрирует в междоузлиях (рис. 199).

Рис. 198.

Рис. 199.

3. Атомы из узлов решетки переходят в незанятые узлы, так называемые вакансии (рис. 200). Этот последний процесс возможен только в дефектных кристаллах, так как вакансии являются, конечно, дефектами кристалла. Очевидно, что переход атомов на вакантные места эквивалентен перемещению самих вакансий в направлении, обратном направлению движения атомов.

Рис. 200.

Наиболее важную роль играет, по-видимому, последний механизм диффузии. Для его осуществления в твердом теле должен существовать градиент плотности вакансий, так что атомы (а значит и вакансии) чаще перемещаются в одном направлении, чем в другом. В поликристаллах важную роль играет процесс заполнения вакансий на границах кристалликов (зерен). По-видимому, в процессе создания вакансий, без которых невозможна диффузия, важную роль играют дислокации.

При экспериментальном изучении диффузии в твердых телах исследуемые вещества приводятся в надежный контакт друг с другом и затем длительное время выдерживаются при той или иной температуре опыта. После такой выдержки снимаются последовательно тонкие слои, перпендикулярные к направлению диффузии, и исследуются концентрации продиффундировавших веществ в зависимости от расстояния до места контакта.

В последнее время широко используются искусственные радиоактивные вещества, присутствие которых легко обнаруживается по их излучению.

Этот метод (метод меченых атомов) позволяет исследовать и явление самодиффузии, т. е. диффузии в твердом теле атомов самого этого тела.

Общий закон диффузии в твердых телах — такой же, как в газах и жидкостях. Это - закон Фика, о котором мы не раз упоминали.

Что касается коэффициента диффузии то выражение для него можно получить из соображений, сходных с теми, которые были приведены на стр. 318 в связи с вопросом о диффузии в жидкостях. Ведь диффузия в твердом теле тоже осуществляется скачками атомов из их положений равновесия в узлах кристаллической решетки. Но теперь о дальности скачка можно вполне определенно сказать, что она равна постоянной решетки а.

Необходимо, однако, иметь в виду, что при вэкансионном механизме диффузии атом из узла решетки может совершить скачок только в том случае, - если соседний узел пустует, если он представляет собой вакансию, как это показано на рис. 200. Но даже и при таком соседстве атому необходима добавочная энергия чтобы скачок в вакансию состоялся. Ведь в узле решетки потенциальная энергия атома минимальна. Поэтому любое смещение атома из узла, включая и смещение в соседнюю вакансию, требует добавочную энергию, которую он с некоторой вероятностью может получить в результате флуктуации. Эта вероятность, как всегда, определяется законом Больцмана:

Здесь -энергия, необходимая для скачка из узла решетки, энергия перемещения атома в вакансию.

По соображениям, приведенным на стр. 318, коэффициент самодиффузии в твердом теле может быть записан в виде:

где а — постоянная решетки и среднее время пребывания атома в узле решетки. Это время, очевидно, тем меньше, чем больше вероятность образования вакансии рядом с атомом и чем больше вероятность

того, что атом получит энергию перемещения На стр. 319 мы видели, что вероятность образования вакансии равна Теперь мы видим, что вероятность того, что атом получит энергию равна Поэтому выражение для коэффициента диффузии может) быть записано в виде:

Множитель (так называемый предэкспоненциальный множитель) — постоянная, характерная для данного вещества. Величина равная сумме энергии образования вакансии и энергии перемещения атома в вакансию, называется энергией активации диффузии и тоже является величиной, характерной для вещества.

Коэффициент диффузии в твердых телах очень мал. Для золота, например, при комнатной температуре он порядка Даже вблизи температуры плавления золота он достигает значения лишь в Это показывает, как сильно зависит коэффициент диффузии от температуры. 1

Малость коэффициента диффузии в твердых телах объясняется тем, что для того, чтобы диффузионный скачок атома в вакансию состоялся, необходимо, чтобы практически одновременно произошли два, вообще говоря, маловероятных события: чтобы рядом с атомом образовалась вакансия и чтобы сам атом получил в результате флуктуации энергию, достаточную для скачка.

При других механизмах диффузии, при диффузии одних веществ в другие, коэффициент диффузии вычисляется иначе. Об этом читатель узнает из специальных курсов. Но во всех случаях коэффициенты диффузии по абсолютному значению малы. Так, например, коэффициент диффузии серы в железо даже при температуре, близкой к равен приблизительно Но несмотря на малость коэффициентов диффузии в твердых телах, роль диффузии в твердых телах очень велика. Именно диффузия обеспечивает такие явления и процессы в твердых телах, как отжиг для устранения неоднородностей в сплавах, насыщение поверхностей деталей углеродом, азотом и т. д., спекание порошков и другие процессы обработки металлов.

ПРИЛОЖЕНИЕ. ПЕРЕВОДНЫЕ МНОЖИТЕЛИ, СВЯЗЫВАЮЩИЕ ЕДИНИЦЫ СИСТЕМЫ СИ С ЕДИНИЦАМИ ДРУГИХ СИСТЕМ И ВНЕСИСТЕМНЫМИ ЕДИНИЦАМИ

(см. скан)

(см. скан)

<< Предыдущий параграф Следующий параграф >>
Оглавление