Главная > Разное > Уравнения и краевые задачи теории пластичности и ползучести
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

9. Дифференциальные зависимости между компонентами тензора деформаций (условия неразрывности деформаций)

Дифференциальные зависимости (1.144) между компонентами тензора деформаций и компонентами вектора перемещений позволяют простым дифференцированием по известным перемещениям как некоторых функций координат точек тела определить компоненты тензора деформаций. Решение обратной задачи — нахождение перемещений как функций координат точек тела по известным компонентам деформаций — сводится к интегрированию системы дифференциальных уравнений в частных производных (1.144). Для существования решений этой системы необходимо наличие определенных связей между шестью компонентами деформаций, т. е. выполнение определенного условия интегрируемости уравнений (1.144). Это условие называют условием сплошности или совместности деформаций Сен-Венана. Условия сплошности деформаций получаются из уравнений (1.144) исключением из них частных производных от соответствующих перемещений по соответствующим координатам:

Выполнение условия Сен-Венана (1.149) [191] не только необходимо, но в случае односвязных областей достаточно для интегрируемости дифференциальных уравнений Коши (1.144).

Приведенные в данной главе статические и геометрические уравнения применимы для любого тела независимо от его состояния, т. е. для любой сплошной среды. Однако при этом необходимо, чтобы рассматриваемое тело (среда) было сплошным как до деформации, так и после нее. Поскольку указанные уравнения не отражают физической природы исследуемого тела (упругое или пластическое и т. д.), для решения задачи о напряженном и деформированном состоянии исследуемого тела следует к полученным статическим и геометрическим уравнениям прибавить еще физические уравнения, т. е. уравнения связи между компонентами тензора напряжений и компонентами тензора деформаций.

<< Предыдущий параграф Следующий параграф >>
Оглавление